
N88- 1 1 2 2 9 :

PERFORMANCE ANALYSIS OF PARALLEL BRANCH AND BOUND SEARCH
WITH THE HYPERCUBE ARCHITECTURE

Captain Richaql T. Mraz, USAF
lMSCS/DOXC
Johnson Space Center, Texas 77058

ABSTRACT

With the availability of commercial parallel computers,
researchers are examining new classes of problems for
benefits from parallel processing. This paper presents
results of an investigation of the class of search intensive
problems. The specific problem discussed in this paper is
the 'Least-Cost' Branch and Bound search method of
deadline job scheduling. The object-oriented design
methodology was used to map the problem into a parallel
solution. While the initial design was good for a prototype,
the best performance resulted from fine-tuning the algorithm
for a specific computer. The experiments analyze the
computation time, the speed up over a VAX 11/785, and the
load balance of the problem when using a loosely coupled
multiprocessor system based on the hypercube architecture.

INTRODUCIlON

Within the past decade, parallel computer architectures
have been a subject of significant research efforts.
Integrated circuit technology, high speed communications,
along with hardware and software designs have made
parallel computers much easier to build and much more
reliable (6,10,14,15). Parallel processing has also proven to
be an effective solution to certain classes of problems.
Probably the most notable class is array or vector problems
that run order-of-magnitudes faster on parallel architectures
such as the Cray. Because of the recent proliferation of
parallel computers, researchers are investigating other
classes of problems for potential benefits from parallel
architectures. Search intensive problems are one such class.
Figure 1 illustrates, research in the area of parallel computers
has been highly successful in producing several general
purpose hardware designs. Clearly, this list indicates the
availability of parallel processing system hardware;
however, the application and software support systems are
not as prevalent. Stankovic points out that "much of the
distributed system software research is experimental work'
(17: 17). He further emphasizes that "work needs to be
done in the evaluation of these systems in terms of the
problem domains they are suited for and their performance"
(17: 17).

Yet, another area of interest in parallel processing is the
mapping of a problem to a parallel solution. Probably, the
largest problem researchers face today in parallel computer
systems is the inability of humans to decipher the inherent
parallelism of problems that are traditionally solved using
sequential algorithms. Patton identified a possible cause of
this human shortcoming when he said, "While the world
around us works in parallel, our perception of it has been
filtered through 300 years of sequential mathematics, 50

years of the theory of algorithms, and 28 years of Fortran
programming" (1 1: 34). Basically, humans have not trained
their thought processes to accommodate the concepts of
solving problems in parallel. Because of this, without new
parallel computing algorithms, parallel software development
tools, and performance measuring techniques, parallel
computing may never be fully exploited.

Company Product

Alliant Computer Systems C o r p o d on FXjSeries
Bols Beranek, and Newman Butterfly
Connol Data Corporation
Cray Research Inc.
Digital Equipment Corporation

ELXSI (a subsidiary of Trilogy Inc .) System 6400
Encore Computer Corporation Multimax
ETA Systems Inc. GF-10

Floating Point Systems Inc.
Goodyear Aerospace Corporation MMP

Cyber 205 Series 600
Cray-2 and X-MP
VAX 1 In82 a d 784

(a spin-off of Control Data Co rporntion)
T Series

IBM Corporation RP3
Intel Scientific Cornputas ipsc
Schlumberger Ltd. FAIM-I
Sequent Computer Systems Jnc.
Thinkiig Machines Corporation

Balance 21ooO
Connection Machine

Figure 1: U.S. Companies Offering or
Building Parallel Processors (6:753)

Problem

because a large class of problems that may benefit from
parallel processing are search intensive, this research
investigated the actual performance of a class of search
problems on the Intel iPSC Hypercube computer.

Two examples of the need for this research into parallel
search algorithms and performance evaluations are elements
of the Strategic Defense Initiative (SDI) and the Pilot's
Associate (PA). The SDI Organization is investigating
defensive weapon systems and battle management systems
for a strategic defense. While researchers for the PA
program are investigating flight domain systems that provide
expert advice in critical mission functions, such as aircraft
systems monitoring, situation assessment: mission planning,
and tactics advising (5,12:102,16). The general approach to
solve some of the battle management and PA problms uses
traditional operations research (OR) and artificial inrelligence

Because of the proliferation of parallel computers and

165

(AI) programming techniques. These techniques are based
on a systematic search of the solution space of the problem.
Hence, this research focuses on parallel search methods.
And without loosing generality, the specific technique is
parallel branch and bound. For example, the SDI battle
management system must resolve the resource allocation of
sensor and tracking satellites to defensive weapon systems
(16: 4-5). Answers to such a problem involves a complex
solution space with exponential computation time to find the
optimal solution. Researchers plan to reduce the run time
complexity using parallel computers. The ultimate goal is to
find the proper combination of parallel computer architecture
and parallel algorithm such that results can be calculated in
"real-time", where "real-time" is that time interval in which
an answer must be delivered(l0:8).

While a general search definition is useful during the
parallel design phases of research, a specific problem must
be solved for an actual performance evaluation. To this end,
the specific class of 'hast-Cost' Branch and Bound search
is used, where the basis of the hypercube performance
evaluation is the Deadline Job Scheduling (DJS) problem.
In a DJS problem, a set of jobs or tasks are defined by a 3-
tuple (Pi,di,ti), where

pi = Penalty for not scheduling job i
di = Deadline by which job i must be completed
ti = Time to run the job i

The goal is to find the largest subset of jobs that can run by
their deadline while minimizing the total penalty incurred.
This search uses both a ranking function to identify
potentially good solution paths and two bound functions to
eliminate needless searching in parts of the solution space.
The DJS problem is characterized by exponential time
complexity to find the optimal subset of jobs (worse case).

The goals of this research can now be summarized as
follows,

1- Explore a design methodology to map a problem into a
parallel computer.

Because of the difficulties of mapping a problem to a
parallel computer, a formal design approach is needed
to help the programmer identify the parallel activity
within a problem. Since the development and proof of
a new design methodology is beyond the scope of this
research, only traditional design approaches will be
examined.

2- Measure the performance of parallel branch and bound
search on a parallel computer.

Since some researchers with search intensive
problems, such as the SDIO and Pilot's Associate,
have requirements for 'real-time' processing,
experiments must be run to examine the possibilities
for speed up. The results of a parallel branch and
bound test can be used as a benchmark for further
research as well.

3- Evaluate the hypercube as a suitable architecture for
search algorithms.

In conjunction with the development of a good parallel
algorithm, the speed up of a problem is also a function
of the parallel computer architecture. Therefore, as
Stankovic pointed out, the parallel architecture must be
evaluated to identify their suitable problem domains.

Parallel Processing Issues

Two fundamental issues of parallel processing form a
basic set of constraints for parallel problem solving. Simply
stated, the first concept of maximum parallelism places a
restriction on a parallel solution. This constraint may take
several forms. First, the problem may inherently have
limitations and dependencies that cannot be overcome.
Second, a poor algorithm may inhibit parallel activity.
Finally, parallel computer architectures have been targeted to
solve specific classes of problems.

The second parallel processing issue deals with the
mapping of a problem into a parallel solution. For humans.
thinking in parallel does not come naturally. Therefore, a
design methodology is needed to describe a problem such
that parallel activity can be identified.

Overview of the Paper

In the introduction, a look at the need for this research,
the definition of the problem, and the description of two
parallel processing issues identified fundamental concepts
used throughout this research. In the next section, a
description of the hypercube computer presents the parallel
environment for this research. Then, the definition of search
and the parallel branch and bound design is reviewed.
Following the design, the experimental results and
conclusions of this research complete the paper.

HYPERCUBE ARCHITECTURE

The parallel environment for this research is the Intel
iPSC Hypercube computer. Initial research on the
hypercube, known as the Cosmic Cube, was conducted by
Professor Charles L. Seitz at the California Institute of
Technology (8,14). The basis of the hypercube computer
can be described by the process model of computation (14).
Simply stated, the process model describes the interaction of
processes using message passing instead of shared
variables(14:22). Using such a model, "a programmer can
formulate problems in terins of processes and 'virtual'
communication channels between processes" (14:23). The
Intel iPSC hypercube used in this research adheres to the
process model of computation in two ways. First,
programmers define and encapsulate processes on any iPSC
node. In fact, several processes can be placed on each iPSC
node. Second, the iPSC operating system provides a set of
message passing primitives for interprocess communication.
The processor interconnection strategy that provides good
message passing properties to support this model of
computation is called the binary-n-cube or hypercube (see
Figure 2) (14,15,18). As described by Wu, the binary n-
cube is a network of 2" processors where each node has n
neighbors (18:239). The number n also describes the
dimension of the cube. For example, a 3-dimension cube
has 23 nodes and each node has 3 neighbors. Node
identification consists of a binary number of length n (see
Figure 2).

166

OOO 001

110 111

Figur- 1: Three-Dimension Cube Structure, with
. vertices labeled &om 0 to 7 in binary (1566).

In addition to the message passing architecture, a
programmer can configure the hypercube into several logical
strucms, such as ring, tree, grids, torus, and bus using
specific message passing schemes (8,14). Using these
structures, efficient nearest neighbor communications is
maintained and the structure of the parallel solution can be
designed to match the structure of the problem.

FUNDAMENTALS OF SEARCH

Search is a basic Operations Research (OR) and Artificial
Intelligence (AI) programming technique. Such a strategy is
used when problems cannot be solved using direct methods
(i.e. formulas, algorithms, etc.) (1355). Several specific
search strategies have been developed (2,7,13). Each
strategy varies the way the solution space of the problem is
examined for answers. Sometimes the entire solution space
is blindly searched for an answer. While other search
techniques use heuristics or rules to guide through the
solution space. The solution space for a search is typically
represented using a tree organization (7:325). Horowitz and
Sahni describe the search tree as follows (7:325-329). The
root of the tree represents the initial state of the problem (see
Figure 3). Each nonterminal node in the tree represents a
problem state in the search. The state space of a search is
defined as the collection of all paths from the root node to
any node in the tree.

I
Figure 3: Search Tree with Node Definitions

Even though trees are used to represent the solution space of
a search, the tree is usually not stored explicitly in the
computer. Because search problems have the additional
overhead of combinatorial explosion due to the branching
factor or the depth of the tree, only portions of the tree

needed to solve the problem are kept in storage. For this
research, branch and bound, the general form of a state
space search, is used. By manipulating two functions, a
ranking function and a bound function, branch and bound
can be used to model 'blind' as well as intelligent search.
While 'blind' search techniques, such as Depth-First and
Breadth-First search, do not use knowledge of the problem
domain to control the search process, other search methods,
called intelligent search, try to narrow the search space,
shorten the search time, and reduce the storage needed by
applying knowledge of the problem domain to control the
search. The following actions are used to meet the three
goals of 'intelligent' search (2:59),

1- Decide which node to expand next.
2- Select the most promising successors when

3- Eliminating or pruning the search tree.
expanding a node.

To represent a node in the branch and bound search space, a
solution vector (~ 1 . ~ 2 , ..., xn), is used (7:323). Each Xi is
constrained by explicit and implicit constraints. The explicit
constraints define the range of values that each xi can be
assigned. For example, the solution vector for a 4-Task
Deadline Job Scheduling problem is (xi.x2,x3,x4). The
explicit constraints for this problem are simply Xi E (0,1} ,
where 1 denotes that task i is included in the schedule and 0
denotes that job i is not included in the schedule. For
instance, a valid solution vector for the 4-Task problem
would be (l,l,l,*). This vector represents the search state
where jobs 1,2, and 3 have been scheduled and job 4 has
not been scheduled. To help the reader in understanding the
DJS constraints,, the following job set will be used in
examples throughout this section (16384),

kb pi di fi
1 5 1 1
2 1 0 3 2
3 6 2 1
4 3 1 1

Using the definition of explicit constraints, the solution
space of the example job set is depicted in Figure 4. The
grey node identifies the example solution vector (l,l,l,*).
The second set of constraints, implicit constraints, define
relationships among the various xi's. The nodes in the
solution space that meet both the explicit and the implicit
constraints define j=anmswer nodes. The first implicit constraint
for the DJS problem is called the Deadlinflotal Time
Bound. This constraints requires a job to be scheduled such
that the total run time for all jobs included in the schedule
does not exceed the maximum deadline. Referring to the
example 4-Job problem above, the solution vector (l,l,*,*)
passes the Deadlinefl'otal Time implicit constraint because
the maximum deadline of jobs 1 and 2 is 3 and the total run
time of jobs 1 and 2 equals 3. However, the solution vector
(l,l,l,*) does not pass the Deadliinenotal Time Bound
because the maximum deadline of jobs 1,2, and 3 equals 3
and the total run time of those same jobs equals 4.

The second implicit constraint, CosWpper Bound, for
the DJS problem is based on the cost of the node and a
global upper bound. The cost function is calculated in two
steps (16386). First, find m where,

m=max(iIiE S,}
Sx = the subset of jobs examined a node X

167

~~

Figure 4: Example 4-Job Deadline Job Scheduling Solution Space
Next, compute the cost of node X using the following
equation,

c'(X) = Fi

where J = the set of jobs included in the schedule at node X.

i < rn
i e J

The cost of a node translates to the total penalty incurred of
all jobs that have not been scheduled so far. The cost of
each node of the example job set is shown inside the circles
of Figure 4. For example, the cost of solution vector
(1,0,*,*) equal 10 because,

m = m a x (i I i E Sx) = 2

J = (1)

i E (2.3.4)

The second part of the Cost/Upper Bound constraint
involves calculating the upper bound of node X using the
following function,

U(X) = F.
1

i c J

The value of the upper bound identifies the maximum cost
solution node inthe subtree rooted at node X. For example,
vector(1,0,*,*) of the tree in Figure 4 has an upper bound of
14 since the cost of solution node (O,l,O,O) equal 14 and

solution node (0,1,0,0) is the highest cost node in the
subtree. During the seach, the lowest upper bound is
maintained as a global bound. The gobal upper bound is
defined by the following function,

global upper bound = min(U(x),current upper bound)

A child of the current node being expanded is added to the
list of 'live nodes' (nodes that will be expanded later) if the
cost of the child is less than the global upper bound. (Note:
the list of 'live nodes' is maintained in Least-Cost order,
hence, the name Least-Cost Branch and Bound).

PARALLEL DESIGN

One goal of this research was the investigation of a
parallel design methodology. After reviewing several
common design strategies, the object-oriented design
methodology was selected for the research (3,4). The basic
concept of an object design is the decomposition of the
problem into objects, operations, and communications
among the objects. Because the hypercube architecture is
defined by the process model of computation, where
'processes' communicate using 'messages', parallel
solutions defiied by an object design map naturally into the
hypercube. The programmer can describe the problem as
fine-grained objects using the object model. These objects
can be mapped directly to hypercube processes, or for
efficiency and reduced communications, a collection of
objects can be implemented as a hypercube process. Figure
5 shows the configuration of the parallel branch and bound
search objects and the communications dependencies among
those objects. The first process is called the Control
Process. It is defined by the objects in the top processor box
(see Figure 5). The meta-controller, terminate check, and
bound check serve as global control throughout the parallel
search. The Control Process resides in Node 0 of the
hypercube. The remaining nodes contain the Worker
Process. The task of each Worker Process is to find the best
answer to a subproblem. A subproblem for a branch and
bound search is equivalent to searching a subtree of the
solution space for the best answer in that subtree.

168

RoccsaOr-1 I

P-3 Controller

Taminnte
Solver

Controller

Figure 5: Object Visibility Diaaam

During the search, the Control Process monitors the
progress of the search by creating an initial set of
subproblems to solve, sending those subproblems to Worker
Processes, and terminating the search. Upon receiving a
problem, the Worker Process finds the best answer (in that
subme). Once the entire subtree has been examined, the
Worker Process posts a 'work request' to the Conaol
Process and waits for additional work. The entire problem
is finished when the Control Process does not have any
problems to solve and all Worker Processes have posted
'work requests'. This translates to a machine state where no
more work is available and all workers need a problem to
solve.
EXPERIMENTAL RESULTS

Three measures, Computation Time, Speed Up, and
Load Balance, were used to categorize the performance of
the parallel search problem on the iPSC Computer. First,
Computation Time measures the run time of a problem.
Because the parallel computational environment involves
additional processes, one representation of the total
computation time of an algorithm is defined by the following
formula (1 :95),

TN = Ts + Tc + Tw (1)
where

TN = Computation Time for N processors
T, =StartUpTime
Tc = Processor Computation Time
Tw = Wind Down Time

Start Up Time, T,, measures the time to initialize the parallel
processor before any parallel computation begin. Start up
may include such things as initial parsing of the job, initial
message transfers, or down load time of the programs to the
parallel machine itself. The second term, processor

computation time, measures the time the computer spends
actually solving the problem. This term is common in
sequential processor run time analysis. The final term in
equation 1 is wind down time. This time accounts for the
gathering of results from the various processors in the
computer and analyzing or tallying those final results.

Up, compares the time to compute a solution using one
processor and the time to compute a solution using N
processors. It is defined as follows (14:28),

The second measure for the performance evaluation, Speed

S = T ~ + T N (2)
where

T i = Time to computer a result with one processor
TN = Time to computer a result with N processors (Eqn 1)

The speed up of a problem run in parallel is intuitively easy
to understand. If a problem can be parsed into N sub-
problems, with each subproblem taking 1/N of the total
computation, then the maximum speed up of N is achieved.
The perfect speed up, N, is highly unlikely because of the
overhead of start up and the wind down time.
Communications among processing elements also induce
limitations on this measure.

Finally, the third measure, load balance, may be helpful
in identifying computation bottlenecks. Because of the
nature of the design and the branch and bound problem, the
'load' is defined to be the number of nodes expanded by a
Worker Process. When plotted against the average load
performed across all Worker Processes, balanced and
unbalanced work loads can be identified. Single-Instruction-
Multiple-Data (SIMD) problems that partition data to
promote parallel activity tend to have regular communication
and computation cycles. These classes of problems show
the best performance under balanced work loads (9). Since
parallel search is a Multiple-Instruction Multiple-Data
(MIMD) problem, the communication and computation
cycles cannot be guaranteed to be regular. Hence, the load
balance measure must be evaluated along with the other
performance measures before drawing conclusions.

Baseline Performance

The baseline of performance for this research is a Digital
Equipment Corporation VAX 11/785 running the 4.2 BSD
(Berkeley Software Distribution) UNDC operating system.
The configurntion of the machine used for this research has 8
Megabytes of main memory and 1800 Megabytes of disk
storage. The sequential versions of the Deadline Job
Scheduling problems were programmed in C Language, and
the time information was obtained using the UNIX "times"
function. Of the four parameters measured by the "times"
function, this research focused on user-time. The user-time
of a process is that time devoted to computation. The
overhead associated with system calls, page swaps, etc. was
not used for two reasons, (1) this research is actually
interested in compute time of the algorithm and not operating
system overhead; and (2) the VAX is under various system
loads during the course of the experiments which would
influence system time and the overall timing data.

Parallel Performance

First, the DJS problem was tested on the Intel iPSC
simulator running on the VAX. While the simulator creates
a good environment to learn how to program the iPSC, it
does not show true parallel activity. Hence, it should not be
used to fine-tune a problem. After porting the code from the

169

simulator to the actual IPSC, the original design was
modified to achieve the best computation times. It should be
noted that the object design worked well for an initial
implementation, but the best perfoxmance results were
attributed to fine tuning on the actual hardware. The only
part of the parallel DJS used for fine-tuning was the iPSC
Control Process. This process has the responsibility to
create the initial set of problems to solve. At some point, it
becomes beneficial to stop creating problems and to start
handing them out to worker nodes. It should be noted the
results of these experiments have fine-tuned to large problem
sizes. For the parallel experiments, job sets from 4-Jobs to
25-Jobs were tested on six cube sizes, d-1, d-2, d-3, d-4,
and d-5, where d = dimension). The d-0 cube could not
create a data structure large enough to solve large DJS
problems. Timing results for all runs was calculated using
the iPSC Clock function on each node of the hypercube.
Since the resolution of the iPSC Node Clock function is
1160th of a second, some of the computation times were
unmeasurable. The data in this section has been plotted for
comparison and to show trends.

Before analyzing the results of the job scheduling
experiments, a description of the test data is necessary.
Since the deadline job scheduling solution uses least-cost
branch and bound, them time to schedule a set of n+ l jobs
may take less time than scheduling n jobs. Therefore, two
peudqequivalent classes of problems were devised such
that the larger the job set created a more difficult problem to
solve. Two reasons for creating @equivalent classes
are, (1) the proof of equivalent classes of jobs is beyond the
scope of this research; and (2) job set with these
characteristics make the analysis a bit easier.

As described in a previous section, each job is defined by
a 3-tuple (pi,di,ti), where pi is the penalty incurred if the job
is not scheduled, di is the deadline when the job must be
finished running, and ti is the time to run job i. With this
information, the first set of problems (see below) guarantees
that all jobs can be scheduled. The VAX solves this problem
in O(n) time.

p. = 1, V i
1

I Deadline Job Scheduline .

2 t s m i n (d i)
i = 1 i

I

The second pseudo-equivalent class is solved in exponential
time by the VAX and it is described with the following
values for the job 3-tuples,

140

12n

100

80

E-nodes
Expanded 60-

40

m

t . = 1
1

p = 2*t.
i 1

T

!.
Load Balance - Deadline Job Scheduling

Problem Set #1
20-Jobs solved on an iPSC D 4

..

..

..

..

0 . : : : : : : : : : : ; : : .

First, an analysis of the O(n) job set. Parallel processing
appears to show no reductions in the time order complexity
of O(n) problems (see Figure 6). The best performance was
attributed to the iPSC d-1 and the best speed up was
approximately 0.33 over VAX. Since this search problem
degenerates to an examination of the left-most branch of the
search tree, the problem does not map well to a parallel
processor. The Load Balance analysis shows this result (see
Figure 7). Basically, this problem cannot run in parallel.
For small problem sizes, (scheduling 15 jobs or less) only
one processor solves the problem while for large problem
sizes, two iPSC worker nodes are used. This problem re-
enforces the concept of maximum parallel activity because of

170

Time to
first solution

Deadline Job Scheduling
Problem Set #2

iPSC and VAX Run Time

0- iPSCd-5
* iPSCd-4

0.01 1
4 5 6 7 8 9 10 11 12 13 14 15

Number of Jobs

Figure 8: Deadline Job Scheduling- Problem Set #2
Computation Time

concurrently, the global upper bound converges quickly to
the best upper bound of the entire search space. Once the
upper bound converges, the workers no longer search the
subtrees. They only prune the remaining search space. In
the case of the d-5 hypercube, the Control Process generates
128 initial problems to solve. At this point the upper bound
has all ready converged, and the search quickly ends with
the workers just pruning the search space and never actually
searching the subtrees.

Load Balance - Deadline Job Scheduling
Problem Set #2

S J o b s solved on an iPSC D-4

Expanded 3ooo

"1 loo0

* *

0 0
1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

Node Number
Figure 9: Deadline Job Scheduling- Roblem Set #2

Load Balance of scheduliig 15-Jobs on an iPSC D-4

CONCLUSIONS

The main objective of this research was the performance
evaluation of search problems on the hypercube architecture.
First, conclusions from the other research goals. The results
of the first goal identified the object-oriented design

methodology as a good design approach to map a problem
into a parallel solution. The object model worked well for
this research. The results of the object design resulted in a
fine grained mapping of the problem space, and the
implementation of the design focused on collecting several
objects into coarse grained iPSC processes. During the
design, details of the branch and bound problem were not
overlooked and during the implementation, inefficiencies of
communications were reduced. Even though the initial
design needed fine tuning to achieve the best performance,
the implementation of the initial design created a good
prototype. As a recommendation for future research, the
object design methodology should be extended to other
parallel processors such as shared memory machines or
other hypercube architectures. As noted with this research,
an object design worked well for the hypercube because of
the similarity of object design and the process model of
computation. Additional tests of object-oriented design will
test the flexibility and suitability of the design methodology
as a general approach to map a problem into a parallel
architecture.

The second goal of this research was the performance
evaluation of search problems on a parallel processor. As
the results show, a sequential problem solving technique,
like search, can be mapped to a parallel processor and speed
ups over traditional sequential machines can be achieved. In
fact, over a narrow range, the parallel solution reduced the
time order complexity of the problem. But, the results of the
O(n) job set also re-enforced the concept of maximum
parallel activity due to limitations within the problem.

171

Finally, the third goal of this research was to examine the
suitability of the hypercube architecture to solve search
problems. Branch and bound is a
technique with centralized control. The parallel solution
presented in this paper was mapped onto an extremely
loosely coupled architecture. Even though this research
successfully produced speed ups, the nature of the
hypercube architecture and the nature of the problem are not
similar. Therefore, parallel search should be examined on
other, more tightly coupled architec-tures, such as shared
memory machines. Yet another approach to speed up search
problems is to design new algorithms instead of mapping
sequential techniques to parallel processors.

programming

BIBLIOGRAPHY

1. Akl, Selim G. ad. "Design, Analysis, and
Implementation of a Parallel Tree Search Algorith,"
Transactl 'oris M

2. Barr, Avron, and Edward A. Feigenbaum. &

California: HeurisTech Press, 1981.

3. Booch, Grady. "Object-Oriented Development,"
-tiom

4. Booch,Grady. Menlo
Park, California: Benjamin/Cummings, 1983.

5. Bosma, John T. and Richard C. Wheelan. Q&lg fn &
Defense -. Arlington, Virginia: Pasha

Publications, 1985.

6. Fenkel, Karen A. "Evaluating Two Massively Parallel
Machines,"
(August 1986).

7. Horowitz, Ellis, and Sartij Sahni. Fundamentals ef
C o m p m mr i th rns . Rockville, Maryland Computer
Science Press, 1978.

8. Intel iPSC Concurrent Programming Workshop Notes,
Intel Scientific Computers, Beaverton, Oregon. (16-20 June
1986).

9.
,4nalv& nf nf & Machines. MS Thesis. School
of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH, December 1986.

10. Norman, Captain Douglas 0. Reasoning
fPTrheEilptAssociate:AnExamination nfaMi2ddBzrsed
AD-mach Q ReasoniG for Artificid

r . MSThesis. Schoolof ~a~~
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH, December 1985.

11. Patton. Peter C. "Multiprocessors: Architectures and
Applications," -: 29-40 (June 1985).

12. Retelle, LtCol John P. Jr. "The Pilot's Associate-
Aerospace Application of Artificial Intelligence," -
10-105 (June 1986).

Analv& gnd Machim Jntelligencc,
PAMI-4 192-203 (March 1982).

Handbook of Artificid Intellieence. Vol 1. Standford,

Software -, m: 21 1-221.

nf & m: 2e 752-758 . .

Lee, Lieutenant Ronald. Performance Compan 'mmd

&l-TiW

. .

14. Seitz, Charles L. "The Cosmic Cube,"
Communications n f h m: 2 22-33 (January 1985).

15. Siegel, Howard Jay, and Robert I. McMillen. "The
Multistage Cube: A Versatile Interconnection Network,"

16. Seward, Walter D., and Nathaniel J, Davis IV.
"Opportunities and Issues for Parallel Processing in SDI
Battle ManagementK3." Presented at the AIAA Computers
in Aerospace V Conference, October 1985.

17. Stankovic, John A.
Research and Critical Issues in Distributed System
Software," Distributed hocessirg Technical Commim
Newsletter, 2: 14-47 (March 1, 1985).

65-76 (December 1981).

J "A Review of Current

13. Rich, Elaine. Artificial Intelligence . NewYork:
McGraw-Hill, 1983.

172

